

NBF-003-001205

Seat No.

B. Sc. (Sem. II) (CBCS) Examination

April / May - 2017

Mathematics: BSMT-201 (A)

(Geometry, Trigonometry & Matrix Algebra)

Faculty Code: 003

Subject Code: 001205

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) Figures to the right indicate full marks of the question.
- 1 Give answers of all following questions:

- (1) Define singular matrix.
- (2) For a square matrix A determine the type of matrix $A + A^{T}$.
- (3) State Cayley-Hamilton theorem.
- (4) If λ is an eigen value of A then what is the corresponding eigen value of A^5 ?
- (5) What is the rank of $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$?
- (6) Verify whether the sequence $\left\{\frac{1}{n}\right\}_{n\geq 1}$ is convergent or not.
- (7) Define Cauchy sequence.
- (8) State general principle of convergence of sequence.
- (9) Write the equation of right circular cylinder with radius r whose axis is parallel to Y axis.
- (10) What is the radius of right circular cylinder whose guiding curve is $x^2 + y^2 + z^2 = 4$; x + y + z = 3?
- $(11) \left(\cos\theta + i\sin\theta\right)^5 \left(\cos 2\theta i\sin 2\theta\right)^3 = \underline{\hspace{1cm}}$

- (12) If 1, w are two roots of cube roots of unity then the third root is _____.
- (13) If $x = \cos \theta + i \sin \theta$ then $x + \frac{1}{x}is$ _____.
- (14) Write polar form of $1+\sqrt{3i}$.
- (15) Find roots of $x^4 1 = 0$.
- (16) Express tanh x in terms of exponential function.
- (17) $\cosh^{-1} x =$
- (18) $\cosh^2 x \sinh^2 x =$
- (19) Find the value of $\log(-7)$.
- (20) Find the real part of $\sin z$.
- 2 (A) Attempt any three:
 - 1) Define symmetric matrix and provide an example of the type.
 - (2) Discuss the convergence of a sequence $\left\{\sqrt{n+1}-\sqrt{n}\right\}_{n\geq 1}.$
 - (3) Find eigen values of $\begin{bmatrix} 2 & 5 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$
 - (4) Explain homogeneous system of linear cautions with suitable example.
 - (5) Define: (i) cylinder, (ii) right circular cylinder.
 - (6) Prove that every convergent sequence is bounded.
 - (B) Attempt any three:
 - (1) Find rank of $\begin{bmatrix} 2 & 5 & 1 & -1 \\ 3 & 6 & 1 & -2 \\ 4 & 7 & 1 & -3 \end{bmatrix}$
 - (2) Prove that eigen values of Skew-Hermitian matrix are either zero or purely imaginary.
 - (3) Discuss the consistancy of system of simulteneous linear equations.

6

- (4) Find equation of a cylinder whose generator parallel to $\frac{x}{3} = \frac{y}{2} = \frac{z}{1}$ and passing through a guiding curve $x^2 + 2xy + y^2 = 1; z = 0.$
- (5) Prove that every convergent sequence has unique limit.
- (6) Find eigen vectors of $\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$
- (C) Attempt any two:

10

- (1) Derive equation of right circular cylinder with axis $\frac{x-a}{l} = \frac{y-b}{m} = \frac{z-c}{n} \text{ and radius } r.$
- (2) Using Cayley-Hamilton theorem, find inverse of

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- (3) Solve the system of linear equations : x-y+3z=4, 3x-4y+z=2, x-3y+z=-2.
- (4) Prove that each eigen value of a matrix A is non zero if and only if A is invertible.
- (5) Prove that if $\lim_{n\to\infty} a_n = l$ then

$$\lim_{n \to \infty} \left(\frac{a_1 + a_2 + a_3 + \dots + a_n}{n} \right) = l$$

3 (A) Attempt any three:

- (1) Simplify: $\frac{(\cos 3\theta + i \sin 3\theta)^4 (\cos 4\theta i \sin 4\theta)^5}{(\cos 4\theta + i \sin 4\theta)^3 (\cos 5\theta + i \sin 5\theta)^{-4}}$
- (2) Prove that $\tanh^{-1} x = \sinh^{-1} \frac{x}{\sqrt{1-x^2}}$.
- (3) Find real and imaginary part of $(1+i)^i$.

(4) If
$$z = \cos \theta + i \sin \theta$$
 then prove that $\frac{1+z^2}{1-z^2} = i \cot \theta$.

- (5) If $\tan \frac{x}{2} = \tanh \frac{u}{2}$, prove that $\sinh u = \tan x$.
- (6) Prove that $\sec h^2 x + \tanh^2 x = 1$.

(B) Attempt any three:

9

- (1) Solve: $7 \sinh x + 20 \cosh x = 24$.
- (2) If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, show that $\lim_{n \to \infty} x_1 . x_2 x_n = -1$.
- (3) Find roots of $x^4 + 1 = 0$.
- (4) Prove that $\cos^8 \theta = \frac{1}{128} [\cos 8\theta + 8\cos 6\theta + 28\cos 4\theta + 56\cos 2\theta + 35].$
- (5) If $a = \cos \theta + i \sin \theta$ and $b = \cos \phi + i \sin \phi$, then prove that $\cos (\theta + \phi) = \frac{1}{2} \left(ab + \frac{1}{ab} \right)$.
- (6) Prove that $\tan \left[i \log \left(\frac{a-ib}{a+ib}\right)\right] = \frac{2ab}{a^2+b^2}$.

(C) Attempt any two:

- (1) State and prove De'Movire's theorem.
- (2) Expand $\sin n\theta$ in terms of $\sin \theta$ and $\cos \theta$.
- (3) Find real and imaginary parts of $\sin^{-1}(\cos\theta + i\sin\theta), 0 < \theta < \frac{\pi}{2}$.
- (4) If $a+ib=i^{i\cdots}$, prove that $a=\frac{2}{\pi}\tan^{-1}\left(\frac{b}{a}\right)$ and $b=-\frac{1}{\pi}\log\left(a^2+b^2\right)$.
- (5) Prove that

$$(a+ib)\frac{m}{n} + (a-ib)\frac{m}{n} = 2(a^2 + b^2)\frac{m}{2n}\cos\left(\frac{m}{n}\tan^{-1}\frac{b}{a}\right).$$